Juri Rappsilber

Wellcome Senior Research Fellow

Juri Rappsilber is a Wellcome Senior Research Fellow, Professor of Proteomics in the University of Edinburgh and Professor of Bioanalytics in the Technische Universität Berlin. His group develops tools to study the function, location, interactions and structure of proteins in cells. Most of the work involves cross-linking, mass spectrometry, machine learning and software development. Juri Rappsilber took his PhD in Proteomics at the European Molecular Biology Laboratory (EMBL) in Heidelberg and Goethe Universität Frankfurt am Main in the lab of Matthias Mann and followed him as a postdoc to Odense, Denmark. In 2003 he relocated as principle investigator to the FIRC Institute of Molecular Oncology, Milan, which he left in 2006 to move to the University of Edinburgh. He became Wellcome Senior Research Fellow in 2009 and Professor of Proteomics in 2010. He has also held the post of Professor of Bioanalytics in Berlin since 2011.

Lab members

Colin Combe, Therese Dau, Martin Graham, Georg Kustatscher, Edward Rullmann, Christos Spanos, Juan Zou

A simple explanation of research in the Rappsilber lab - Research in a Nutshell Videos


Cellular tomography

Genes are not randomly distributed in the genome. In humans, 10% of protein-coding genes are transcribed from bidirectional promoters and many more are organised in larger clusters. Intriguingly, neighbouring genes are frequently coexpressed but rarely functionally related. We could show recently that coexpression of bidirectional gene pairs, and closeby genes in general, is buffered at the protein level (Kustatscher et al., 2017). Taking into account the 3D architecture of the genome, we found that co-regulation of spatially close, functionally unrelated genes is pervasive at the transcriptome level, but does not extend to the proteome. We extended this analysis from human cells to mouse tissues (Grabowski et al., 2018). Chromosomal proximity of genes explains a proportion of this nonfunctional mRNA coexpression also there. However, the main driver of non-functional mRNA coexpression across mouse tissues is epigenetic similarity. Protein-level buffering likely reflects a lack of coordination of post-transcriptional regulation of functionally unrelated genes. The large presence of non-functional coexpression of genes at the transcript but not protein level suggests that proteomics data should surpass transcriptomics data when screening for functional links between genes. 

The annotation of protein function is a longstanding challenge of cell biology that suffers from the sheer magnitude of the task. We therefore developed ProteomeHD, which documents the response of 10,323 human proteins to 294 biological perturbations, measured by isotope-labelling mass spectrometry. Using this data matrix and robust machine learning we create a co-regulation map of the cell that reflects functional associations between human proteins and that outperforms predictions done by STRING based on the NCBI GEO repository currently holding mRNA expression profiling data from more than one million human samples. Our map identifies a functional context for many uncharacterized proteins, including microproteins that are difficult to study with traditional methods. Co-regulation also captures relationships between proteins which do not physically interact or co-localize. For example, co-regulation of the peroxisomal membrane protein PEX11ß with mitochondrial respiration factors led us to discover a novel organelle interface between peroxisomes and mitochondria in mammalian cells. The co-regulation map can be explored at www.proteomeHD.net.

Our lab is also continuing its development of cross-linking/mass spectrometry as a tool to investigate in cells structures of proteins and their complexes.

Selected publications:

Kustatscher, G., Grabowski, P., and Rappsilber, J. (2017). Pervasive coexpression of spatially proximal genes is buffered at the protein level. Mol. Syst. Biol. 13, 937.

Grabowski, P., Kustatscher, G., and Rappsilber, J. (2018). Epigenetic Variability Confounds Transcriptome but Not Proteome Profiling for Coexpression-based Gene Function Prediction. Mol. Cell. Proteomics 17, 2082–2090.

O’Reilly, F.J., and Rappsilber, J. (2018). Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol. 25, 1000–1008.